P/N: 110401111643X

UNI-T

UNI-TREND TECHNOLOGY (CHINA) CO., LTD.

No. 6, Gong Ye Bei 1st Road, Songshan Lake National High-Tech Industrial Development Zone, Dongguan City, Guangdong Province, China

UT15B/UT17B/UT18B MAX

Руководство пользователя цифрового мультиметра

ПРЕДИСЛОВИЕ

Благодарим вас за покупку этого нового продукта. Для безопасного и правильного использования устройства, пожалуйста, внимательно прочтите данное руководство, особенно разделы по технике безопасности. После прочтения рекомендуется хранить руководство в легко доступном месте, желательно рядом с устройством, для последующего использования.

ОГРАНИЧЕННАЯ ГАРАНТИЯ И ОТВЕТСТВЕННОСТЬ

Компания Uni-Trend гарантирует, что изделие не имеет дефектов материалов и сборки в течение одного года с даты покупки. Гарантия не распространяется на повреждения, вызванные несчастными случаями, небрежностью, неправильной эксплуатацией, модификацией, загрязнением или ненадлежащим обращением. Продавец не имеет права предоставлять никакую другую гарантию от имени Uni-Trend. Если вам требуется гарантийное обслуживание в течение гарантийного срока, обратитесь напрямую к продавцу.

Uni-Trend не несет ответственности за любые особые, косвенные, случайные или последующие убытки, вызванные использованием данного устройства.

Оглавление

1. Введение	4
2. Особенности	4
3. Комплектация	5
4. Информация по технике безопасности	5
5. Электрические символы	7
6. Общие технические характеристики	8
7. Внешняя структура	9
8. Экран	10
9. Поворотный переключатель и кнопки	11
10. Инструкция по эксплуатации	13
11. Технические характеристики	21
12. Магнитный держатель (UT-B23)	27
13. Обслуживание	16

1. Введение

UT15B MAX / UT17B MAX / UT18B MAX — это надёжные цифровые мультиметры с функцией True RMS. Благодаря технологии подавления помех VFD, прибор способен фильтровать помехи от несущей частоты, наложенной на синусоиду или различные искажённые сигналы напряжения, и измерять выходное напряжение при работе с частотнорегулируемыми приводами. В режиме постоянного/переменного тока прибор может измерять частоту и коэффициент заполнения. UT17B MAX / UT18B MAX имеет функцию измерения температуры с разрешением 0,1 °C. Функция проверки светодиодов позволяет UT18B MAX тестировать светодиоды с напряжением до 12 В без необходимости учитывать полярность. Серия оснащена защитой от ложного срабатывания и звуковыми/световыми сигналами при неправильном подключении к входным клеммам, что обеспечивает безопасную работу. UT15B MAX / UT17B MAX / UT18B MAX сертифицированы по стандартам СЕ и сЕТLus, категория III 600 В.

2. Особенности

- Большой ЖК-дисплей с аналогово-цифровым отображением на 6000 отсчётов, скорость обновления: 5 раз в секунду.
- Встроенная технология VFD для точного измерения искажённого и частотно-регулируемого напряжения.
- Интеллектуальное измерение ёмкости автоматический выход из режима относительного измерения при значении более 6,2 мкФ.
- Возможность фиксации максимального/минимального значения (MAX/ MIN) при измерении напряжения, тока и сопротивления (UT15B MAX / UT17B MAX).
- Полная защита от ложного срабатывания и перенапряжения до 1000 В; индикация превышения напряжения и тока.
- UT18B MAX оснащён функцией измерения светодиодов (выход: 12 В) с автоматическим определением полярности.
- Входной разъём оснащён световой и звуковой сигнализацией при неправильном подключении.
- Светодиодная индикация (UT17B MAX) для проверки высокого напряжения (≥30 B).
- Два режима подсветки дисплея (яркий/слабый).

UNI-T

 Запоминание положения переключателя режима (AC/DC ток) при переключении.

3. Комплектация

Пожалуйста, свяжитесь с вашим поставщиком, если какой-либо из указанных ниже аксессуаров отсутствует или повреждён:

4. Информация по технике безопасности

1. Стандарты безопасности

• Стандарты СЕ и cETLus:

EN 61326-1:2013; EN 61326-2-2:2013 EN 61010-1:2010; EN 61010-2-033:2012

- Категория измерений 600V (CAT III), CAT III 600V
- Максимальное измеряемое напряжение 600V для установок категории CAT III
- Степень загрязнения 2
- Двойная изоляция
- Только для использования в помещении

2. Инструкции и меры предосторожности

∧ Предупреждение:

Пожалуйста, внимательно прочитайте все инструкции, чтобы предотвратить поражение электрическим током, пожар или травмы. Если прибор используется не по назначению, защита, обеспечиваемая производителем, может быть нарушена.

 Запрещено использовать прибор без задней крышки — это может привести к поражению электрическим током.

- Проверьте, не повреждены ли щупы или их изоляция перед использованием. Если изоляция повреждена, замените щуп на новый, соответствующий стандарту EN 61010-031.
- Если на дисплее появляется значок "\(\bigcup \)", замените батарейки как можно скорее, чтобы обеспечить точность измерений.
- Установите поворотный переключатель в правильное положение.
- Не измеряйте значения, превышающие предельно допустимые это может привести к поражению током и поломке прибора.
- Не переключайте режимы во время измерений это может повредить прибор.
- После каждого измерения обязательно отключайте щуп от измеряемой цепи. При измерении тока сначала выключите питание, а затем отсоединяйте щупы, особенно при высоких токах.
- Осторожно при работе с напряжением выше 60V DC или 30V AC существует риск поражения током.
- Не используйте прибор при высокой температуре и влажности, а также не храните его во влажных местах — это может повлиять на работу.
- Не вскрывайте прибор без разрешения это приведёт к потере гарантии и может представлять опасность.
- Очищайте корпус влажной тканью с мягким моющим средством.
 Не используйте абразивы и растворители!
- Использование щупов:
 При измерениях в категориях CAT III / CAT IV

Убедитесь, что защитный кожух щупа надежно установлен — это необходимо для предотвращения поражения током.

При измерениях в категориях САТ II

Кожух может быть снят — это позволяет проводить измерения в утопленных розетках и т.п. Будьте внимательны, чтобы не потерять защитные элементы.

5. Электрические символы

LINI-T

	Постоянный ток	
~	Переменный ток	
ᆂ	Заземление	
	Двойная изоляция	
A	Опасное напряжение! Риск поражения электрическим током!	
<u>^</u>	Предупреждение	
CE	Соответствует стандартам Европейского Союза	
c lotertek	Соответствие стандартам UL STD 61010-1, 61010-2-033; Сертифицировано по CSA STD C22.2 NO. 61010-1, 61010-2-033	
CAT III	Категория измерений III предназначена для испытания и измерения цепей, подключённых к распределительной части низковольтной электросети здания.	
CAT IV	Категория измерений IV предназначена для испытания и измерения цепей, подключённых к источнику питания низковольтной электросети здания.	

6. Общие технические характеричтики

- 1. Максимальное напряжение между входным терминалом и землей: см. раздел «Технические характеристики»;
- ∆ Клемма А: Плавкий предохранитель FF 11A H 1000B быстродействующий. Способность к разрыву: 20кА или выше;
- ∴ Клемма мА/µА: Плавкий предохранитель FF 440мА Н 1000В быстродействующий. Способность к разрыву: 10кА или выше;
- 4. Количество отсчетов дисплея: 6100;
- 5. Прочее:

Диапазон: Авто/ручной;

Полярность: Авто;

Обновление: 5 раз в секунду; при превышении диапазона отображается «OL»:

Тип экрана: НТО-дисплей;

Рабочая температура: от 0°C до 40°C (от 32°F до 104°F); Температура хранения: от -10°C до 50°C (от 14°F до 122°F); Относительная влажность: ≤75% (при от 0°C до 30°C); ≤50% (при от 30°C до 40°C);

- 6. Рабочая высота: от 0 до 2000 м;
- 7. Батарея: AA R6P 1.5B × 2;
- 8. Низкий заряд батареи: на экране отображается символ "\";
- 9. Габаритные размеры: около 182 мм × 91 мм × 45 мм;
- 10.Вес: 452 г (включая батареи);
- 11 3MC.

Для радиополя 1 В/м: Общая погрешность = Заданная погрешность + 5% от диапазона;

Для радиополя свыше 1 В/м: Согласно заявленным спецификациям;

12.Степень защиты (ІР):

UT15B MAX / UT17B MAX: IP40;

UT18B MAX: H/Д.

7. Внешняя структура

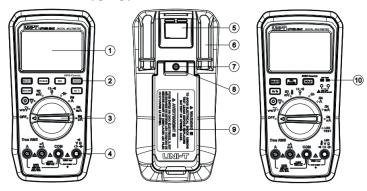


Рисунок 1

- 1. ЖК-дисплей;
- 2. Функциональные кнопки;
- 3. Поворотный переключатель;
- 4. Входные разъёмы;
- 5. Крючок для подвешивания (предназначен для магнитного держателя. Магнитный держатель UT-B23 приобретается отдельно.);
- 6. Держатель для щупов;
- 7. Винт крепления крышки батарейного отсека;
- 8. Крышка батарейного отсека;
- 9. Подставка;
- 10. Разъём для тестирования светодиодов (только для UT18B MAX).

8. Экран

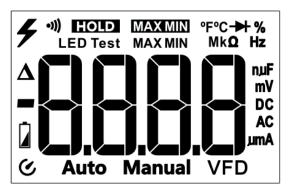


Рисунок 2

Символ	Описание		
4	Переменное напряжение выше 30 B		
HOLD	Удержание данных		
	Отрицательное значение		
AC/DC	Измерение переменного/постоянного тока		
MAX MIN	Функция фиксации максимума и минимума		
MAX/MIN	Измерение максимального/минимального значения		
	Низкий заряд батареи		
Auto	Автоматический выбор диапазона		
Manual	Ручной выбор диапазона		
*	Измерение диодов		
•11)	Проверка целостности цепи (звуковой сигнал)		
Δ	Относительное измерение		

Ω kΩ MΩ	Единицы измерения сопротивления: ом, килоом, мегаом		
Hz kHz MHz	Единицы измерения частоты: герц, килогерц, мегагерц		
%	Скважность		
mV V	Единицы измерения напряжения: милливольт, вольт		
μ A m A A	Единицы измерения тока: микроампер, миллиампер, ампер		
nF μF	Единицы измерения ёмкости: нанофарад, микрофарад		
°C	Температура в градусах Цельсия		
°F	Температура в градусах Фаренгейта		
VFD	Фильтр низких частот		
&	Автоматическое отключение питания		
LED Test	Тестирование функции светодиодов		

9. Поворотный переключатель и кнопки

Положение	Описание	
V~,V≔,mV≅	Измерение переменного/постоянного напряжения	
Ω	Измерение сопротивления	
→	Измерение напряжения p-n перехода диода	
- 11)	Проверка целостности цепи (прозвонка)	
⊣ ←	Измерение ёмкости	
Hz	Измерение частоты	
%	Измерение скважности	
ß	Измерение температуры	

µA≅ mA≅ A≅	Измерение переменного/постоянного тока	
VFD	Измерение напряжения с переменной частотой (с фильтрацией ВЧ помех)	
LED TEST	Режим проверки светодиодов	
OFF	Выключение прибора	

Функциональные кнопки:

- RANGE (Диапазон): используется для переключения между ручным и автоматическим выбором диапазона. Каждое нажатие этой кнопки увеличивает диапазон измерений. При достижении максимума переключает на минимальный диапазон. Долгое нажатие (>2 сек) или поворот переключателя режима — выход из ручного режима (применимо для функций: V~, V—, A—, Ω,).
- MAX/MIN (для моделей UT15B MAX / UT17B MAX): короткое нажатие
 — вход в ручной режим отображения и фиксация максимального
 значения; повторное нажатие минимального. Долгое нажатие
 (>2 сек) или поворот переключателя выход из режима MAX/MIN
 (применимо для функций: V~, V==, mV==, Ω).
- REL (Относительное значение): сохраняет первое отображённое значение как опорное. Второе значение будет разницей между текущим и опорным. Повторное нажатие — выход из режима. Применимо для функций: V, I, Ω, Ч (для UT18B MAX: только Ч ()
- Нz/%: при измерении напряжения и тока переключает режим между частотой и скважностью (долей заполнения).
- SELECT (Выбор функции): применяется при совмещённых положениях переключателя. При нажатии в режиме измерения переменного напряжения активирует режим низкочастотного фильтра (VFD) для стабильных измерений. Повторное нажатие — выход из VFD-режима.
- HOLD (Задержка отображения): фиксирует текущее значение на экране (символ HOLD на дисплее). Повторное нажатие — выход в обычный режим измерения.
- 🙀 (Подсветка): 1-е нажатие — включает подсветку 1 класса (слабая яркость)

2-е нажатие — включает подсветку 2 класса (сильная яркость) Подсветка отключается автоматически через 120 секунд. Также может быть выключена вручную нажатием кнопки.

10. Инструкция по эксплуатации

Перед использованием проверьте батарейки (ААА 1,5 В × 2). Если после включения мультиметра на дисплее появляется символ " П — необходимо заменить батарейки. Символ " Л " у клемм указывает, что измеряемое напряжение или ток превышает допустимое значение.

1. Измерение переменного напряжения (рисунок 3)

- Установите поворотный переключатель в положение измерения переменного напряжения (AC voltage).
- Подключите красный щуп к разъёму "V", а черный к "СОМ".
 Оба наконечника щупов должны касаться измеряемых точек (соединение параллельно нагрузке).
- Если входное сопротивление составляет около 10 МОм, то наличие нагрузки с высоким сопротивлением может вызвать ошибку измерения.
 В большинстве случаев, если сопротивление цепи меньше 10 кОм, ошибка незначительна (0,1 % или менее).
- В режиме переменного напряжения (ACV) нажмите кнопку SELECT, чтобы включить режим VFD. Для обеспечения точности измерений встроенный фильтр устраняет высокочастотные помехи. (Применяется для измерений в цепях с регулируемой частотой напряжения)
- Отображаемое значение это истинное среднеквадратичное значение переменного напряжения (True RMS).

Рисунок 3

2. Измерение постоянного напряжения (рисунок 4)

- Установите поворотный переключатель в положение измерения постоянного напряжения (DC voltage).
- Подключите красный щуп к разъёму "V", а черный к "СОМ".
 Оба наконечника щупов должны касаться измеряемых точек (соединение параллельно нагрузке).
- Для положения измерения в милливольтах (DC mV) входное сопротивление составляет ≥3 ГОм, что исключает затухание при измерении слабых сигналов и обеспечивает высокую точность. При незамкнутых щупах на дисплее могут появляться случайные цифры, но они не влияют на результат.

- Не подавайте напряжение выше 1000 В RMS. Мультиметр может измерить и большее значение, но это может повредить устройство.
- Будьте осторожны: высокое напряжение опасно для жизни!
- Модель UT17B MAX оснащена светодиодной индикацией при измерении напряжения ≥30 В (постоянного или переменного).
- Перед использованием измерьте заведомо известное напряжение, чтобы убедиться в правильной работе прибора.

Рисунок 4

3. Измерение сопротивления / проверка целостности цепи (рисунок 5)

- Установите поворотный переключатель в положение измерения сопротивления.
- Подключите красный щуп к разъёму «Ω», а чёрный к разъёму «СОМ». Оба щупа должны касаться измеряемых концов (подключение параллельно нагрузке).

- На дисплее будет показано «OL», если измеряемый резистор оборван или сопротивление превышает максимально допустимый диапазон.
- Перед измерением сопротивления в цепи обязательно отключите все источники питания цепи и полностью разрядите все конденсаторы.
- Щупы могут вызывать погрешность 0.1Ω~0.2Ω при измерении малых сопротивлений. Для повышения точности рекомендуется измерять в режиме REL при замкнутых щупах.
- Если сопротивление замкнутых щупов превышает 0.5Ω, проверьте надёжность соединений и целостность проводов.
- При измерении сопротивлений до 60 МОм может потребоваться несколько секунд для стабилизации показаний — это нормально.

- Для проверки целостности цепи:
 - если сопротивление более 50Ω , цепь разомкнута, зуммер не звучит;
 - если ≤10Ω, цепь замкнута, зуммер звучит постоянно.
- Перед проверкой целостности также отключите питание цепи и разрядите все конденсаторы.
- Не подавайте напряжение более 60 В DC или 30 В AC, чтобы избежать травм.

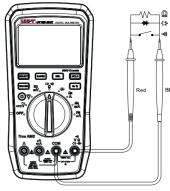


Рисунок 5

4. Проверка диодов (рисунок 5)

- Установите поворотный переключатель в положение проверки диодов.
- Подключите красный щуп к разъему «Ω», а черный к «СОМ».
 Оба щупа должны касаться измеряемых концов (подключение параллельно нагрузке).
- На дисплее будет отображено «OL», если диод оборван или полярность подключения обратная. Нормальное напряжение для кремниевого перехода PN составляет примерно от 500 до 800 мВ.

∴ Предупреждение:

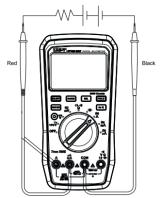
• Перед проверкой диодов в цепи отключите питание и полностью разрядите все конденсаторы. Диапазон измерения напряжения диода составляет примерно 3,0 В.

• Не подавайте напряжение выше 60 В DC или 30 В AC, чтобы избежать травм.

5. Измерение ёмкости (рисунок 6):

- Установите поворотный переключатель в положение измерения ёмкости.
- Подключите красный щуп к разъему "+f-", а черный к «СОМ».
 Оба щупа должны касаться измеряемых концов (подключение параллельно нагрузке).
- При отсутствии подключения мультиметр будет показывать фиксированное значение (внутренняя собственная ёмкость прибора).
 Для измерения малой ёмкости это значение следует вычесть из результата, чтобы обеспечить точность измерения.

- «OL» будет отображаться, если измеряемый конденсатор замкнут или его ёмкость превышает максимальный диапазон.
- Для больших ёмкостей нормально, если значение стабилизируется в течение нескольких секунд.
- Перед измерением обязательно полностью разрядите все конденсаторы (особенно высоковольтные), чтобы избежать повреждения прибора и травм.



6. Измерение переменного / постоянного тока (рисунок 7):

- Поверните переключатель в положение «А≅ / mA≅ / µА≅».
- При выборе положения «А≅» подключите красный щуп к разъему «А≅»; при выборе положения «mА≅ / µА≅» подключите красный щуп к разъему «mА≅ / µА≅»; черный — к разъему «COM».
- Подключите мультиметр последовательно с нагрузкой. Отображаемое значение переменного тока — это истинное среднеквадратичное значение (True RMS).

↑ Предупреждение:

- Перед подключением мультиметра последовательно с измеряемой цепью необходимо выключить питание этой цепи.
- Разъемы «А≅ / mА≅ / µА≅» защищены предохранителями.
 Не подключайте щуп параллельно с цепью, чтобы избежать повреждения мультиметра и риска травм.
- Если щуп подключен к неправильному разъему (не соответствующему «А» или «µА/mА»), зуммер издаст предупреждающий сигнал, а кнопки SELECT и HOLD начнут мигать одновременно.
- При измерении частоты и скважности, если подается неизвестное напряжение, будет постоянно отображаться символ высокого напряжения (для UT17B MAX индикатор высокого напряжения также загорится).

7. Измерение частоты / скважности импульса:

При измерении переменного напряжения или тока нажмите кнопку Hz/%, чтобы войти в режим измерения частоты. Нажмите снова, чтобы переключиться в режим измерения скважности импульса.

8. Измерение температуры (UT17B MAX и UT18B MAX) (рисунок 8):

- Для UT17B MAX: установите переключатель в положение « ▮», и на экране появится «OL». Для UT18B MAX: установите переключатель в положение « ▮», затем нажмите и удерживайте кнопку SELECT.
- Подключите положительный вывод термопары к разъему «°С», отрицательный — к разъему «СОМ», затем плотно прижмите зонд к поверхности измеряемого объекта.

 Датчик температуры поддерживает только термопары типа К (NiCr-NiSi). Комплектная термопара предназначена для измерения температур ниже 230 °C / 449 °F. Формула преобразования: °F = 1.8 × °C + 32.

9. Измерение светодиодов (UT18B MAX) (рисунок 9):

 Для UT18B MAX: Установите переключатель в положение LED TEST, на дисплее отобразится «OL».

- Тест панели светодиодов: Светодиод загорается сразу после подключения к клемме. Зелёный индикатор показывает положительную полярность.
- Тест выводов светодиода: Подключите красный щуп к клемме LED, чёрный к СОМ. Оба щупа должны соприкасаться с выводами светодиода. На экране отобразится значение напряжения (это значение соответствует порогу срабатывания светодиода моменту его загорания). Если символ « » не отображается, значит красный щуп подключен к положительному выводу, а чёрный к отрицательному. Если отображается « », то наоборот: красный к отрицательному, чёрный к положительному.

Лредупреждение:

- Для режима теста светодиодов: максимальное постоянное выходное напряжение — 12 В, максимальное импульсное выходное напряжение — 30 В.
- Если рабочее напряжение светодиода меньше 9 В он загорится постоянно. Если от 9 В до 12 В будет мигать.
- Если панель светодиода закорочена измеряемый светодиод не загорится, но оба индикатора полярности засветятся.

10. Другие функции:

• При включении мультиметра все сегменты ЖК-дисплея отображаются в течение 2 секунд, после чего прибор переходит в нормальный режим измерения. Если произойдёт ошибка внутренней памяти EEPROM, отобразится сообщение ErrE — перезапустите мультиметр, чтобы восстановить нормальную работу.

- Если переключатель режимов (rotary switch) не поворачивается примерно 15 минут во время измерения, прибор автоматически отключится для экономии энергии. Если переключатель или какая-либо функциональная кнопка будет нажата в спящем режиме, мультиметр автоматически включится с коротким звуковым сигналом.
- Зуммер издаёт звуковой сигнал при измерении в следующих случаях:
 а. Напряжени
- е на входе более 1000 В (переменное/постоянное): зуммер издаёт непрерывный сигнал — это указывает на превышение допустимого диапазона.
 - b. Ток более 10 A (переменное/постоянное): зуммер также издаёт непрерывный сигнал для предупреждения.

11. Технические характеристики

- Точность: ± (а% от показаний + b разрядов); гарантия 1 год
- Температура окружающей среды: 23°C ± 5°C (73.4°F ± 9°F)
- Относительная влажность: ≤ 75 %

↑ Предупреждение:

LINI-T

Условие обеспечения точности — температура от 18°C до 28°C, при этом колебания температуры не должны превышать ±1°C.

Если температура выходит за пределы диапазона (<18°C или >28°C), то добавляется дополнительная погрешность, вычисляемая по формуле: $0.1 \times ($ заданная точность) / °C.

1. Измерение постоянного напряжения

Диапазон	Разрешение	Точность
600 мВ	0.1 мВ	
6 B	0.001 B	
60 B	0.01 B	±(0.4% + 3)
600 B	0.1 B	
1000 B	1 B	

- Входное сопротивление: ≥3 ГОм для диапазона мВ; 10 МОм для других диапазонов. На открытой цепи показания могут быть нестабильными (до ±3 разрядов), но стабилизируются после подключения нагрузки.
- Максимальное входное напряжение: ±1000 В. При превышении 1000 В раздаётся сигнал тревоги. На дисплее отображается "OL", если напряжение превышает 1100 В.
- Диапазон для обеспечения точности: от 1 до 100% диапазона измерений.

2. Измерение переменного напряжения

Диапазон	Разрешение	Точность
600 мВ	0.1 мВ	±(0.4% + 3)
6 B	0.001 B	
60 B	0.01 B	±/10/, ± 2\
600 B	0.1 B	±(1% + 3)
1000 B	1 B	
VFD: 600 B	0.1 B	±(8%)

- Входное сопротивление: около 10 МОм
- Отображение: Истинное среднеквадратичное значение (True RMS)
- Частотный отклик: от 40 Гц до 500 Гц (синусоидальный сигнал), от 40 Гц до 200 Гц (несинусоидальный сигнал), от 40 Гц до 400 Гц (режим VFD)
- Диапазон для обеспечения точности: от 1 до 100% диапазона.

Смещение при коротком замыкании: менее 2 разрядов

- Коэффициент амплитудности (crest factor) до 3.0 (до 1.5 при полном масштабе диапазона 600 В). Для несинусоидальных сигналов: Увеличить точность на 3% для crest factor от 1.0 до 2.0 Увеличить точность на 5% для crest factor от 2.0 до 2.5 Увеличить точность на 7% для crest factor от 2.5 до 3.0
- Максимальное входное напряжение: 1000 Vrms. При превышении тревога и отображение "OL", если входное напряжение >1100 В.

3. Измерение сопротивления

Диапазон	Разрешение	Точность	
600 Ом	0.1 Ом		
6 кОм	0.001 кОм		
60 кОм	0.01 кОм	±(0.5% + 2)	
600 кОм	0.1 кОм		
6 МОм	0.001 МОм		
60 МОм	0.01 МОм	±(2.0% + 5)	

- Защита от перегрузки: 1000В-РТС
- Диапазон: Измеренное сопротивление = Отображаемое сопротивление – сопротивление короткозамкнутых щупов
- Напряжение на разомкнутых щупах: около 0.5В (ток тестирования: около 0.4 мА)
- Диапазон для обеспечения точности: от 1 до 100% от диапазона

4. Измерение прозвонки / диодов

Функция	Разрешение	Точность	Примечание
• 1))	0.1 Ом	-	Сопротивление при разомкнутой цепи: 50Ω (зуммер молчит) Сопротивление при хорошо замкнутой цепи: ≤10Ω (зуммер подаёт непрерывный сигнал)

0.0	001 B	10%	Падение напряжения на p-n переходе кремниевого диода: около 0.5–0.8 В (звучит сигнал при подключении) Напряжение холостого хода: около 3.0 В Ток тестирования: около 0.8 мА
-----	-------	-----	---

• Защита от перегрузки: 1000В-РТС

5. Измерение ёмкости

Диапазон	Разрешение	Точность
6 нФ	0.001 нФ	В режиме REL: ±(4.0% + 8)
60 нФ	0.01 нФ	
600 нФ	0.1 нФ	
6 мкФ	0.001 мкФ	±(2.0% + 5)
60 мкФ	0.01 мкФ	
600 мкФ	0.1 мкФ	
6000 мкФ	1 мкФ (≤1000 мкФ)	±(5.0% + 5)
оооо мкФ	1 мкФ (>1000 мкФ)	±10%

- Защита от перегрузки: 1000В-РТС
- Для обеспечения точности измерений рекомендуется измерять ёмкость ≤600нФ в режиме REL.
- В режиме REL мультиметр автоматически выйдет из режима, если входное значение >6.2нФ.
- Диапазон для обеспечения точности: от 1 до 100% диапазона.

6. Измерение частоты / скважности

Диапазон	Разрешение	Точность
от 10 Гц до 10 МГц	от 0.01 Гц до 0.01 МГц	±(0.1% + 3)

от 1% до 99.9%	0.1%	±(1.0% + 4)
----------------	------	-------------

UT15B/UT17B/UT18B MAX Руководство пользователя

- Защита от перегрузки: 1000В-РТС
- Амплитуда входного сигнала в мВ-диапазоне: от >200мВ до <30В. от 1МГц до 10МГц: до 900мВ эффективного значения.
- Скважность измеряется только для прямоугольных импульсов ≤1кГц. Гарантированный диапазон от 10.0% до 90.0%.
- Для диапазона V: амплитуда >10B, для диапазона 1000В ≥100В.
- Скважность работает только для частот 50Гц или 60Гц, и гарантированный диапазон — от 10.0% до 90.0%.
- Для тока: амплитуда входа 60% от максимального диапазона.

7. Измерение температуры (UT17B MAX / UT18B MAX)

Диапазон			Разрешение	Точность
		от -55°C до 0°C		±(6.0%+2)°C
°C	от -55°C до 500°C	>0°С до 50.0°С	0.1°C	±2°C
		>50°С до 500.0°С		±(2.0%+1)°C
	от -67°F до 932°F	от -67°F до 32°F	0.1°F	±(10%+2)°F
°F		>32°F до 122°F		±4°F
		>122°F до 932°F		±(4.0%+4)°F

- Защита от перегрузки: 1000В-РТС
- Примечание: используемый термопара типа К (NiCr-NiSi) предназначен для измерения температур ниже 230°C/449°F

8. Измерение постоянного тока

Диапазон		Разрешение	Точность
	600 мкА	0.1 мкА	
мкА	6000 мкА	1 мкА	. (4. 20/ . 2)
	60 мА	0.01 мА	±(1.2%+3)
мА	600 мА	0.1 мА	

_	6 A	0.001 A	+(1 2%+4)
A	10 A	0.01 A	±(1.270+4)

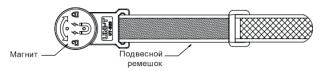
- Зашита от перегрузки: 1000Vrms
- Сигнал тревоги при входе >10А: на дисплее отображается "ОL" при входе >11.00А
- Диапазон для обеспечения точности: от 1 до 100% диапазона
- Учитывая сопротивление проводов и цепи, при измерении тока от источника постоянного напряжения необходимо добавлять 2% к спецификации прибора.

9. Измерение переменного тока

Диапазон		Разрешение	Точность
мкА	600 мкА	0.1 мкА	. (4. 20/ . 2)
MKA	6000 мкА	1 мкА	
мА	60 мА	0.01 мА	±(1.2%+3)
IMA	600 мА	0.1 мА	
	6 A	0.001 A	./4.50/2\
A	10 A	0.01 A	±(1.5%+3)

- Частотный отклик: от 40Гц до 500Гц (синус); от 40Гц до 200Гц (не синус)
- Отображение: истинное среднеквадратичное значение (True RMS)
- Диапазон для обеспечения точности: от 1 до 100% диапазона. Смещение при коротком замыкании: < 2 разряда
- К-фактор пикового значения АС до 3.0
- Несинусоидальные сигналы: Увеличение погрешности на 3.0% при к-факторе от 1.0 до 2.0 Увеличение погрешности на 5.0% при к-факторе от 2.0 до 2.5 Увеличение погрешности на 7.0% при к-факторе от 2.5 до 3.0
- Защита от перегрузки: как и для измерения постоянного тока

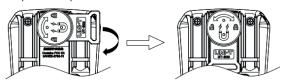
10. Измерение светодиодов (UT18B MAX)

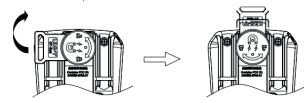

Тест	Терминал панели LED	Индикатор положительной полярности (зелёный)
светодиодов	Терминал щупов	Отображается положительное/ отрицательное напряжение

- Защита от перегрузки: 1000V-РТС
- На дисплее отображается "OL", если напряжение на входе терминала щупов ≥ 6.2 В.

12. Использование магнитного держателя (UT-B23)

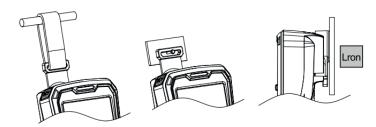
1. Обзор и характеристики


Магнитный держатель, состоящий из магнита и подвесного ремешка, может использоваться для подвешивания мультиметра на шкаф распределения питания, солнечный комбайнер, капот автомобиля и другие поверхности. Это позволяет проводить измерения без помощи рук и облегчает позиционирование прибора. Магнитный держатель подходит для моделей UT117C, UT15B MAX, UT17B MAX, UT18B MAX и других.


2. Установка

Выберите подходящий способ установки (установка справа или слева, как показано на рисунках), возьмитесь за магнит рукой, вставьте его в пластиковый корпус и поверните магнит в нужном направлении. Магнит плотно фиксируется благодаря конструкции корпуса и магнита.

Установка с правой стороны:



Установка с левой стороны:

3. Эмиссионная способность

Повесьте на гвоздь, крюк или другие объекты либо прикрепите к металлическим поверхностям, таким как шкаф распределения питания, солнечный комбайнер, капот автомобиля и т.д. Как показано ниже:

13. Обслуживание

1. Общее обслуживание

- Пожалуйста, очищайте корпус влажной тканью с мягким чистящим средством. Не используйте абразивные или растворяющие средства.
- При обнаружении любых неисправностей прекратите использование прибора и отправьте его на обслуживание.
- Калибровку или обслуживание должен выполнять профессиональный персонал или специализированное подразделение.

2. Замена батареи или предохранителя (рисунок 10)

- а) Если на дисплее появляется символ "☐", немедленно замените батарею, иначе может снизиться точность измерений. Спецификация батареи: AA 1.5 B × 2:
- Поверните переключатель в положение "OFF", затем отсоедините измерительные провода.
- Замена батареи: Ослабьте винт сверху с помощью отвертки, снимите крышку батарейного отсека и замените батарею. Устанавливайте новые батареи в соответствии с правильной полярностью.
- замена предохранителя (если поврежден вследствие неправильного определения напряжения или перегрузки по току):
- Поверните переключатель в положение "OFF", отсоедините измерительные провода.
- Ослабьте 6 винтов на задней крышке, снимите заднюю крышку и замените перегоревший предохранитель.
- Характеристики предохранителей:
 - F1: 440 mA / 1000 B, ϕ 10 × 35 mm;
 - F2: 11 A / 1000 B, ϕ 10 × 38 мм.
- с) Замена измерительных проводов
 Замените провода, если повреждена их изоляция.

Предупреждение: Измерительные провода для измерения источников

питания должны соответствовать стандарту EN 61010-031, и быть рассчитаны минимум на CAT III 600V, 10A (или выше).

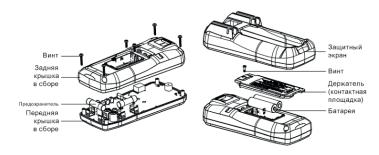


Рисунок 10

Содержание руководства пользователя может быть изменено без предварительного уведомления